Appendix K Benefit Cost Analysis Costs for Asset Adaptation Strategies

Bridge Assets

Adaptation		Cost E	stimate	Туре о	of Event		
Strategy Identification	Adaptation Strategy	Proactively Implement Reactively Repair/Re Strategy (Build Scenario) (Do Nothing Scenar		Heat	Flooding	Project Stage	
			Reduce Therma	al Expansio	n (TE)		
TE5	Increase seat lengths of expansion joints and/or the range of finger joints in bridges	10% of BRC	18% of BRC	х		Design	
TE6	Monitor for temperatures of assets and heat-related impacts by installing sensor systems	\$ 2,000 per bridge	10% of BRC	Х		Design, O&M	The proactive cost is for dependent on the type o etc.). Assume data is tran individuals at the owning The reactive costs assum early signs of damage wi example, lack of proper f result in heavy damages can be detected through abnormal performance.
FD1	Protect bridge piers and abutments with riprap	10% of BRC	75% of BRC		x	Design	
FD2	Alter, upgrade, or retrofit bridge movement system (e.g. bearings) to prevent excessive lateral or vertical displacement due to buoyancy forces or water pressure	8% of BRC	38% of BRC		x	Design	
FD4	Monitor bridge for scour and other conditions that could undermine a bridge's structural integrity during a flooding event	\$ 100,000 per bridge	88% of BRC		x	O&M	Costs are for O&M only.

<u>Cost Notes:</u> Federal Highway Administration (FHWA): \$450 per square foot replacement cost

Bridge Replacement Cost (BRC) = Bridge Deck Area x \$450 per square foot

When a range of costs was provided, the average of the range was used for the BCA.

Sources of adaptation strategy cost research include "Post Hurricane Sandy Transportation Resilience Study in NY, NJ, and

CT," available at https://www.fhwa.dot.gov/environment/sustainability/resilience/publications/hurricane_sandy/fhwahep17097.pdf; "Fresh Coast Green

Solutions," available at https://www.mmsd.com/application/files/8514/8779/6598/SustainBookletweb1209.pdf; "Underground vs. Overhead: Power Line Installation-Cost Comparison and Mitigation," Electric Light and Power Newsletter, available at https://www.elp.com/articles/powergrid_international/print/volume-18/issue-2/features/underground-vs-overhead-power-line-installation-cost-comparison-.html.

Acronyms: % = precent

O&M = operation and maintenance

Updated: January 2019

Assumptions

r the sensor only. Note that operational costs are highly of transmission of the data (cellular, internet, radio, ansmitted and monitored as part of operational duties of ng agency.

mes that damages will result from lack of monitoring and will go unnoticed, leading to more expensive repairs. For r functionality in the bridge's movement system can es to the sub-structure during extreme heat periods. This gh monitoring the bridge movement and identifying

Culverts Assets

		Cost	Estimate	Туре о	f Event			
Adaptation Strategy Identification	Adaptation Strategy	Proactively Implement Strategy (Build Scenario)	Reactively Repair/Rebuild (Do Nothing Scenario)	Heat	Flooding	Project Stage	Assumptions	
	In	crease or Improve Storm	vater Drainage (SW)					
SW10	Enlarge culverts to increase the capacity	\$ 1,000,000 per culvert	\$ 1,000,000 per culvert		х	Design, O&M		
SW12	Replace culverts with bridges	\$ 450 per sq ft	\$ 450 per sq ft		Х	Design		

Cost Notes: These costs are applied to all culverts as follows: 55% of culverts use SW10, 15% culverts use SW12, and 25% of culverts are no action for the BCA.

Federal Highway Administration (FHWA): \$450 per square foot replacement cost

When a range of costs was provided, the average of the range was used for the BCA.

Sources of adaptation strategy cost research include "Post Hurricane Sandy Transportation Resilience Study in NY, NJ, and

CT," available at https://www.fhwa.dot.gov/environment/sustainability/resilience/publications/hurricane sandy/fhwahep17097.pdf; "Fresh Coast Green

Solutions," available at https://www.mmsd.com/application/files/8514/8779/6598/SustainBookletweb1209.pdf; "Underground vs. Overhead: Power Line Installation-Cost

Comparison and Mitigation," Electric Light and Power Newsletter, available at https://www.elp.com/articles/powergrid_international/print/volume-18/issue-2/features/underground-

Acronyms: % = percent O&M = operation and maintenance sq ft = square foot

Facilities Assets

Adaptation				Cost Es	stimate	9	Туре о	of Event			
Strategy Identification	Adaptation Strategy	-	Proactively Implement Strategy (Build Scenario)				epair/Rebuild ng Scenario)	Heat	Flooding	Project Stage	
					Redu	ce Therma	l Expansion (TE)				
TE6	Monitor for temperatures of assets and heat-related impacts by installing \$ 2,000 per facility \$ sensor sytems		\$	2,000	per facility	х		Design, O&M	The proactive a only. Note that dependent on (cellular, interr transmitted an duties of indivi		
					Incre	ease Flood	Protection (FP)				
FP5	Incorporate wet floodproofing: Install flood openings and water-resistant materials to allow building to withstand some exposure to floodwaters and the associated loads/pressures	\$3,0	00 per f	acility	\$	3,600	per facility		x	Design	Assume each fa \$400 each; wet (120 linear feet
FP8	Elevate critical mechanical and electrical equipment	\$ 20,0	000 per f	acility	\$	20,000	per facility		х	Design	Estimate \$20,0 plumbing
FP15	Install sensor systems along or within assets to monitor for water level and changing conditions	\$ 15,0	000 per f	acility	\$	15,000	per facility		x	Design, O&M	The proactive a only. Note that dependent on t (cellular, intern transmitted an duties of individ

<u>Cost Notes:</u> When a range of costs was provided, the average of the range was used for the BCA.

Sources of adaptation strategy cost research include "Post Hurricane Sandy Transportation Resilience Study in NY, NJ, and

CT," available at https://www.fhwa.dot.gov/environment/sustainability/resilience/publications/hurricane_sandy/fhwahep17097.pdf; "Fresh Coast Green

Solutions," available at https://www.mmsd.com/application/files/8514/8779/6598/SustainBookletweb1209.pdf; "Underground vs. Overhead: Power Line Installation-Cost Comparison and Mitigation," Electric Light and Power Newsletter, available at https://www.elp.com/application/files/8514/8779/6598/SustainBookletweb1209.pdf; "Underground vs. Overhead: Power Line Installation-Cost Comparison and Mitigation," Electric Light and Power Newsletter, available at https://www.elp.com/articles/powergrid_international/print/volume-18/issue-2/features/underground-vs-overhead-power-line-installation-cost-comparison-.html.

<u>Acronyms:</u> O&M = operation and maintenance

sq ft = square foot

Updated: January 2019

Assumptions

e and reactive costs are for the sensor nat operational costs are highly n the type of transmission of the data ernet, radio, etc). Assume data is and monitored as part of operational ividuals at the owning agency.

a facility would need six flood vents at vet floodproof applied about 3 feet high eet of wall x 3 feet high = \$3,600)

,000 for each facility for electrical and

e and reactive costs are for the sensor nat operational costs are highly n the type of transmission of the data ernet, radio, etc). Assume data is and monitored as part of operational ividuals at the owning agency.

Benefit Cost Analysis Costs for Asset Adaptation Strategies:
North Jersey Transportation Planning Authority

Rail Track Assets

Updated: January 2019

		Cost Est	imate	Туре о	of Event				
Adaptation Strategy Identification	Adaptation Strategy	Proactively Implement Strategy (Build Scenario)	Reactively Repair/Rebuild (Do Nothing Scenario)	Heat	Flooding	Project Stage	Assumptions		
		Redu	ice Thermal Expansion (TE))					
TE1	Design rail for higher maximum temperatures in replacement or new rail infrastructure	per linear \$ 250 foot per track	per linear \$250 foot per track	х		Design, O&M			
TE2	Lower speeds and use shorter trains to shorten braking distance and to allow for lighter loads to reduce track stress in extreme heat events	\$	\$100,000 per track mile	х		0&M			
IF6	Monitor for temperatures of assets and heat-related impacts by installing sensor sytems	\$ 2,000 per 10 miles	\$100,000 per track mile	x		Design, O&M	The proactive cost is for the sensor only. Note that operational costs are highly dependent on the type of transmission of the data (cellular, internet, radio, etc). Assume data is transmitted and monitored as part of operational duties of individuals at the owning agency. Reactive costs assumes there will be track damages and thus replacement will result from lack of monitoring where early signs will go unnoticed.		
		Use H	eat-Resistant Materials (HF	र)					
HR6	Tree planting to shade assets, plant locations to be balanced against safety protocols	Not applicable to rail tracks	due to right of way issues.	х	х	Design, O&M			
		Pre	event System Failure (SF)						
SF3	Incorporate redundant power and communication lines and systems	\$ 337,500 per mile	\$ 337,500 per mile	х	х	Design			
			•	-	-	T			
SW8	Increase capacity of stormwater infrastructure and drainage system	\$ 250,000 per acre	\$ 250,000 per acre		х	Design			
SW11	Upgrade bridge deck and road drainage systems to manage a higher capacity of stormwater	\$ 250,000 per acre	\$ 250,000 per acre		х	Design			
Increase Flood Protection (FP)									
FP10	Construct and raise protective dikes, bulkheads, berms and levees, including tide gates as necessary	\$ 30,000 per 1,000 linear feet	\$ 100,000 per 1,000 linear feet		х	Design			
FP15	Install sensor systems along or within assets to monitor for water level and changing conditions	\$ 15,000 per 10 miles	\$ 15,000 per 10 miles		x	Design, O&M	These costs are for the sensor only. Note that operational costs are highly dependent on the type of transmission of the data (cellular, internet, radio, etc). Assume data is transmitted and monitored as part of operational duties of individuals at the owning agency.		

<u>Cost Notes:</u> When a range of costs was provided, the average of the range was used for the BCA.

Sources of adaptation strategy cost research include "Post Hurricane Sandy Transportation Resilience Study in NY, NJ, and

CT," available at https://www.fhwa.dot.gov/environment/sustainability/resilience/publications/hurricane_sandy/fhwahep17097.pdf; "Fresh Coast Green

Solutions," available at https://www.mmsd.com/application/files/8514/8779/6598/SustainBookletweb1209.pdf; "Underground vs. Overhead: Power Line Installation-Cost Comparison and Mitigation," Electric Light and Power Newsletter, available at https://www.elp.com/articles/powergrid international/print/volume-18/issue-2/features/underground-vs-overhead-power-line-installation-cost-comparison-.html.

Acronyms: O&M = operation and maintenance

Subarea-wide

0 da			Cost E	stir	nate		Subarea			Туре с	of Event		
Adaptation Strategy Identification	Adaptation Strategy	Proactively Implement Strategy (Build Scenario)		Reactively Repair/Rebuild (Do Nothing Scenario)			A	В	С	Heat	Flooding	Project Stage	Assumptions
	Inc	reas	se or Improve Stormw	ate	r Drainage	e (SW)							
SW1	Construct stormwater retention basins	\$	250,000 per acre	\$	250,000	per acre		х			х	Design	
SW2	Install internal drainage system using basins and sump pumps	\$	1,850 per pump	\$	1,850	per pump		х			х	Design, O&M	
SW3	Install green infrastructure: bioretention ponds, bioswales and rain gardens	\$	172,800 per acre	\$	172,800	per acre		х	х		х	Design	
SW4	Install green infrastructure: pervious pavements	\$	550,000 per acre	\$	550,000	per acre		х			х	Design	
			Increase Flood Prot	ecti	on (FP)								
FP9	Protect and restore wetlands to protect infrastructure	\$	60,500 per acre	\$	60,500	per acre			х		х	Policy, Design	
FP10	Construct and raise protective dikes, bulkheads, berms and levees, including tide gates as necessary	\$	per 1000 30,000 linear feet	\$	30,000	per 1000 linear feet			x		x	Design	
Reduce Flood Damage (FD)													
FD5	Use of vegetation or earthwork to stabilize river and stream embankments and provide riverine buffers	\$	425 per linear foot	\$	425	per linear foot	х	х	х		x	Design, O&M	

<u>Cost Notes:</u> When a range of costs was provided, the average of the range was used for the BCA.

Sources of adaptation strategy cost research include "Post Hurricane Sandy Transportation Resilience Study in NY, NJ, and

CT," available at https://www.fhwa.dot.gov/environment/sustainability/resilience/publications/hurricane_sandy/fhwahep17097.pdf; "Fresh Coast Green

Solutions," available at https://www.mmsd.com/application/files/8514/8779/6598/SustainBookletweb1209.pdf; "Underground vs. Overhead: Power Line Installation-Cost Comparison and Mitigation," Electric Light and Power Newsletter, available at https://www.elp.com/articles/powergrid_international/print/volume-18/issue-2/features/underground-vs-overhead-power-line-installation-cost-comparison-.html.

<u>Acronyms:</u> O&M = operation and maintenance

Updated: January 2019

Road, Transit (Bus Line) Assets

				Cost Es	Туре о					
Adaptation Strategy Identification	Adaptation Strategy		roactively Imple rategy (Build Sce				pair/Rebuild g Scenario)	Heat	Flooding	Project Stage
			Reduc	e Therma	al Ex	pansion (T	E)			
TE6	Monitor for temperatures of assets and heat-related impacts by installing sensor sytems	\$	2,000 per :	10 miles	\$	250,000	per lane mile	х		Design, O&M
			Use Hea	at-Resista	ant N	Aaterials (I	HR)			-
HR3	Use heat-resistant materials, including heat-resistant asphalt, concrete, or painted roadways	\$	per 30 foot tracl		\$	30	per linear foot per track	х		Policy, Design, O&M
HR4	Overlay or rebuild roads with new or more rut-resistant asphalt or concrete	\$	185,000 per l mile	lane e	\$	250,000	per lane mile	х		Design, O&M
HR6	Tree planting to shade assets, plant locations to be balanced against safety protocols	\$	300 per 1	tree	\$	300	per tree	Х	х	Design, O&M
		<u></u>	Prev	vent Syste	em F	ailure (SF)				
SF3	Incorporate redundant power and communication lines and systems	\$	337,500 per	mile	\$	337,500	per mile	Х	х	Design
		-	Increase or Im	prove Sto	orm	water Drai	nage (SW)			
SW8	Increase capacity of stormwater infrastructure and drainage system	\$	250,000 per	acre	\$	250,000	per acre		х	Design
SW11	Upgrade bridge deck and road drainage systems to manage a higher capacity of stormwater	\$	250,000 per a	acre	\$	250,000	per acre		х	Design
			Increa	ase Flood	Pro	tection (FP	2)			
FP10	Construct and raise protective dikes, bulkheads, berms and levees, including tide gates as necessary	\$	30,000	1000 ar feet	\$	100,000	per 1000 linear feet		х	Design
FP15	Install sensor systems along or within assets to monitor for water level and changing conditions	\$	15,000 per	10 miles	\$	15,000	per 10 miles		Х	Design, O&M
		•	Red	luce Flood	d Da	mage (FD)				
FD8	Use new asphalt/concrete mixtures able to withstand flood conditions	\$	550,000 per a	acre	\$	550,000	per acre		х	Design
<u>Cost Notes:</u>	Total cost per mile calculated as number lanes x cost per lane n New Construction: \$2.2 million per mile lane Resurfacing: \$250K per mile lane	nile								

Reconstruct Existing: \$765K per mile lane

When a range of costs was provided, the average of the range was used for the BCA.

Sources of adaptation strategy cost research include "Post Hurricane Sandy Transportation Resilience Study in NY, NJ, and

CT," available at https://www.fhwa.dot.gov/environment/sustainability/resilience/publications/hurricane_sandy/fhwahep17097.pdf; "Fresh Coast Green

Solutions," available at https://www.mmsd.com/application/files/8514/8779/6598/SustainBookletweb1209.pdf; "Underground vs. Overhead: Power Line Installation-Cost Comparison and Mitigation," Electric Light and Power Newsletter, available at https://www.elp.com/articles/powergrid_international/print/volume-18/issue-2/features/underground-vs-overhead-power-line-installation-cost-comparison-.html. Acronyms: O&M = operation and maintenance

Updated: April 2019

t	Assumptions
,	The reactive costs assumes damages will result from lack of monitoring/inspection, and will require resurfacing the road.
, ,	
,	
,	Both costs are applied to two sides of the road at 10 foot intervals.
ı	
ı	Only one of these two strategies is
ı	assigned, where applicable.
ı	
,	
I	